Cotangent bundles for “matrix algebras converge to the sphere”

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leibniz Seminorms for “matrix Algebras Converge to the Sphere”

In an earlier paper of mine relating vector bundles and Gromov–Hausdorff distance for ordinary compact metric spaces, it was crucial that the Lipschitz seminorms from the metrics satisfy a strong Leibniz property. In the present paper, for the now noncommutative situation of matrix algebras converging to the sphere (or to other spaces) for quantum Gromov–Hausdorff distance, we show how to const...

متن کامل

Matrix Algebras Converge to the Sphere for Quantum Gromov–hausdorff Distance

On looking at the literature associated with string theory one finds statements that a sequence of matrix algebras converges to the 2-sphere (or to other spaces). There is often careful bookkeeping with lengths, which suggests that one is dealing with “quantum metric spaces”. We show how to make these ideas precise by means of Berezin quantization using coherent states. We work in the general s...

متن کامل

Moving Frames for Cotangent Bundles

This paper has a very modest scope: we present our “operational system” for Hamiltonian mechanics on cotangent bundles M = T Q, based on moving frames. In a related work [10], we will present some concrete examples to convey the algorithmical nature of this formalism. A powerful tool in riemannian geometry is the “method of moving frames”, introduced by Élie Cartan. Actually, moving frames appe...

متن کامل

Tangent and Cotangent Bundles

of subsets of TM: Note that i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU =  1 (R) 2 : ii) If we de…ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so  (p; Xp) = ( (p); F ( Xp)); and  1 = ( 1 ; F 1 ): Now take  1 (U);  1 (V ) 2 and suppos...

متن کامل

Tangent and Cotangent Bundles

i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU =  1 (R) 2 . ii) If we de…ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so  (p; Xp) = ( (p); F ( Xp)); and  1 = ( 1 ; F 1 ). Now take  1 (U);  1 (V ) 2 and suppose (p; Xp) 2  1 (U)\  1 (V ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expositiones Mathematicae

سال: 2020

ISSN: 0723-0869

DOI: 10.1016/j.exmath.2020.01.006